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Abstract

In this paper, we discuss an almost periodic multispecies Lotka-Volterra mutualism system with time-varying

delays and impulsive effects. By using the theory of comparison theorem and constructing a suitable Lyapunov

functional, sufficient conditions which guarantee the existence and uniqueness and global attractivity of almost

periodic solution of the system are obtained. An suitable example is employed to illustrate the feasibility of the

main results.
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1 Introduction

In real world phenomenon, the environment varies due to the factors such as seasonal effects of weather,

food supplies, mating habits, harvesting. So it is usual to assume the periodicity of parameters in the systems.

However, if the various constituent components of the temporally nonuniform environment is with incommen-

surable (nonintegral multiples) periods, then one has to consider the environment to be almost periodic since

there is no a priori reason to expect the existence of periodic solutions. For this reason, the assumption of

almost periodicity is more realistic, more important and more general when we consider the effects of the

environmental factors. Recently, there have been many nice works on the positive almost periodic solutions of

continuous and discrete dynamics model with almost periodic coefficients(see [1–11] and the references cited

therein).

In this paper, we are concerned with the following multispecies Lotka-Volterra mutualism system with

time-varying delays and impulsive effects
ẋi(t) = xi(t)

[
ai(t)− bi(t)xi(t− τi(t)) +

n∑
j=1,j 6=i

cij(t)
xj(t− σij(t))

1 + xj(t− σij(t))

]
, t 6= tk,

xi(t
+
k ) = (1 + hik)xi(tk), k ∈ Z+, i = 1, 2, · · · , n,

(1.1)

with initial conditions

xi(θ) = φi(θ), θ ∈ [−τ, 0], φi(θ) ∈ C([−τ, 0], R+), i = 1, 2, · · · , n, (1.2)

where xi(t) are the ith species population density at time t, ai(t) represent the population grow rate of the

species xi; bi(t) and τi(t) represent the population decay rate and time delays in the competition among the

ith species, respectively; cij(t) and σij(t) represent the ith species population increase rate and time delays in

the mutualism among the other species xj(i, j = 1, 2, · · · , n, i 6= j); the constant τ is

τ = max
{

max
1≤i≤n

{ sup
t∈R+

τi(t)}, max
1≤i,j≤n,j 6=i

{ sup
t∈R+

σij(t)}
}

;

hik > −1, i = 1, 2, · · · , n, k ∈ Z+ are constants and 0 = t0 < t1 < t2 < · · · < tk < tk+1 < · · · , are impulse

points with lim
k→+∞

tk = +∞.
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For any bounded function f(t) defined on R, define

fu = sup
t∈R

f(t), f l = inf
t∈R

f(t).

Throughout this paper, we assume that

(H1) ai(t), bi(t) and cij(t) are all bounded continuous almost periodic functions such that ali > 0, bli > 0

and clij > 0, i, j = 1, 2, · · · , n, j 6= i.

(H2) Hi(t) =
∏

0<tk<t
(1 + hik), i = 1, 2, · · · , n, k ∈ Z+ are bounded almost periodic functions and there

exists positive constants Hu
i and H l

i such that H l
i ≤ Hi(t) ≤ Hu

i .

(H3) τi(t) and σij(t) are positive and continuously differentiable almost periodic functions on R+ such that

τi(0) = 0, σij(0) = 0, τ̇i(t) < 1 and σ̇ij(t) < 1, which imply that the function ϕi(t) = t−τi(t), ψij(t) = t−σij(t)
exist the inverse functions ϕ−1i (t), ψ−1ij (t) and ϕ−1i (t) > ϕi(t), ψ

−1
ij (t) > ψij(t) for t ≥ 0.

To the best of our knowledge, this are few papers to investigate the global attractivity of positive almost

periodic solution of multispecies Lotka-Volterra mutualism system with time-varying delays and impulsive

effects. The aim of this paper is to obtain sufficient conditions for the existence of a unique globally attractive

almost periodic solution of the systems (1.1) and (1.2), by utilizing the comparison theorem of the differential

equation and constructing a suitable Lyapunov functional and applying the analysis technique of papers

[1, 12–18].

The remaining part of this paper is organized as follows: In Section 2, we will introduce some definitions

and several useful lemmas. In Section 3, by applying the theory of differential inequality, we present the

permanence results for systems (1.1) and (1.2). In Section 4, by constructing a suitable Lyapunov function, we

establish the sufficient conditions which ensure the global attractivity of the system (2.1). In Section 5, some

sufficient conditions which guarantee existence and uniqueness of almost periodic solution of the systems (1.1)

and (1.2) are obtained. A suitable example is given to illustrate the feasibility of the main results in Section

6. Finally, the conclusion ends with brief remarks.

2 Preliminaries

Firstly, we give the definitions of the terminologies involved.

Definition 2.1( [19]) A function f(t, x), where f is an m−vector, t is a real scalar and x is an n−vector, is

said to be almost periodic in t uniformly with respect to x ∈ X ⊂ Rn, if f(t, x) is continuous in t ∈ R and

x ∈ X, and if for any ε > 0, it is possible to find a constant l(ε) > 0 such that in any interval of length l(ε)

there exists a τ such that the inequality

‖ f(t+ τ, x)− f(t, x) ‖=
m∑
i=1

|fi(t+ τ, x)− fi(t, x)| < ε

is satisfied for all t ∈ R, x ∈ X. The number τ is called an ε−translation number of f(t, x).

Definition 2.2( [16]) A function f : R → R is said to be asymptotically almost periodic function if there

exists an almost periodic function q(t) and a continuous function r(t) such that

f(t) = q(t) + r(t), t ∈ R and r(t)→ 0 as t→∞.

For the relevant definitions and the properties of almost periodic functions, we refer to [20,21].

Definition 2.3 If (x1(t), x2(t), · · · , xn(t))T is a positive solution of systems (1.1) and (1.2), (x̄1(t), x̄2(t), · · · , x̄n(t))T

is any positive solution of systems (1.1) and (1.2) satisfying

lim
t→+∞

n∑
i=1

|x̄i(t)− xi(t)| = 0,
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then we say (x1(t), x2(t), · · · , xn(t))T is globally asymptotically stable.

From the point of view of biology, in the sequel, we assume that x(t0) = (x1(t0), x2(t0), · · · , xn(t0))T > 0

for some t0 ≥ 0. Then it is easy to see that, for given x(t0) > 0, the systems (1.1) and (1.2) have a positive

solution x(t) = (x1(t), x2(t), · · · , xn(t))T passing through x(t0) for t ∈ R+.

Lemma 2.1 {(x1(t), x2(t), · · · , xn(t))T ∈ R+n|xi(t0) > 0 for t0 ≥ 0, i = 1, 2, · · · , n} is positive invariant with

respect to the systems (1.1) and (1.2).

Proof. For xi(t0) > 0(i = 1, 2, · · · , n), then we get

xi(t) = xi(t0) exp

{∫ t

t0

[
ai(s)− bi(s)xi(s− τi(s)) +

n∑
j=1,j 6=i

cij(s)
xj(s− σij(s))

1 + xj(s− σij(s))

]
ds

}
> 0.

Thus, we prove Lemma 2.1.

Lemma 2.2( [22]) If ẋ ≥ (≤)x(b− axc), where a, b, c are positive constant, then

lim inf
t→+∞

x(t) ≥ (
b

a
)

1

c

(
lim sup
t→+∞

x(t) ≤ (
b

a
)

1

c

)
.

Lemma 2.3( [23]) Suppose that the continuous operator A maps the the closed and bounded convex set

Q ⊂ Rn onto itself, then the operator A has at least one fixed point in set Q.

Consider the following system

ẏi(t) = yi(t)

[
ai(t)−Bi(t)yi(t− τi(t)) +

n∑
j=1,j 6=i

Cij(t)
yj(t− σij(t))

1 +Hj(t)yj(t− σij(t))

]
, i = 1, 2, · · · , n, (2.1)

with initial value yi(s) = φi(s), s ∈ [−τ, 0], φ is defined as that in (1.2), and

Bi(t) =
∏

0<tk<t

(1 + hik)bi(t), Cij(t) =
∏

0<tk<t

(1 + hjk)cij(t), j 6= i.

Lemma 2.4 {(y1(t), y2(t), · · · , yn(t))T ∈ R+n|yi(t0) > 0 for t0 ≥ 0, i = 1, 2, · · · , n} is positive invariant with

respect to the system (2.1).

Lemma 2.5 For system (1.1) and (2.1), the following results hold:

(1) if (y1(t), y2(t), · · · , yn(t))T is a solution of system (2.1), then

(x1(t), x2(t), · · · , xn(t))T =
( ∏
0<tk<t

(1 + h1k)y1(t),
∏

0<tk<t

(1 + h2k)y2(t), · · · ,
∏

0<tk<t

(1 + hnk)yn(t)
)T

is a solution of system (1.1);

(2) if (x1(t), x2(t), · · · , xn(t))T is a solution of system (1.1), then

(y1(t), y2(t), · · · , yn(t))T =
( ∏
0<tk<t

(1 + h1k)−1x1(t),
∏

0<tk<t

(1 + h2k)−1x2(t), · · · ,
∏

0<tk<t

(1 + hnk)−1xn(t)
)T

is a solution of system (2.1).

Proof. The proof of Lemma 2.5 is similar to the proof of Lemma 2.5 in [1] and we omit the details here.

3 Permanence

In this section, we establish permanence results for systems (1.1) and (1.2), which can be given by Lemma

2.2. The proofs of following results are similar to the proofs in [1] and we omit the details here.
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Theorem 3.1 Assume that (H1)-(H3) hold. Then any positive solution (x1(t), x2(t), · · · , xn(t))T of systems

(1.1) and (1.2) satisfies

mi ≤ lim inf
t→+∞

xi(t) ≤ lim sup
t→+∞

xi(t) ≤Mi, i = 1, 2, · · · , n,

where

Mi =

aui +
n∑

j=1,j 6=i
cuij

bli
exp

{(
aui +

n∑
j=1,j 6=i

cuij
)
τ

}
, mi =

ali
bui

exp{(ali − buiMi)τ}.

That is, systems (1.1) and (1.2) is permanent.

Theorem 3.2 Assume that (H1)-(H3) hold. Then any positive solution (y1(t), y2(t), · · · , yn(t))T of system

(2.1) satisfies
mi

Hu
i

≤ lim inf
t→+∞

yi(t) ≤ lim sup
t→+∞

xi(t) ≤
Mi

H l
i

, i = 1, 2, · · · , n.

That is, system (2.1) is permanent.

The next result tells us that there exist positive solutions of system (2.1) for t ∈ R+ totally in the interval

of Theorem 3.2. To be precise:

Theorem 3.3 System (2.1) has at least one positive solution (y1(t), y2(t), · · · , yn(t))T satisfying

mi

Hu
i

≤ yi(t) ≤
Mi

H l
i

for t ∈ R+.

4 Global attractivity

In this section, we establish the global asymptotical stability of system (2.1).

Theorem 4.1 Assume that the system (2.1) satisfy condition (H1)-(H3) and the following conditions:

(H4) lim inf
t→+∞

Gi(t) > 0, i = 1, 2, · · · , n,

where

Gi(t) = Bi(t)−
[
ai(t) +

Mi

H l
i

Bi(t) +

n∑
j=1,j 6=i

Mj

H l
j(1 +mj)

Cij(t)

] ∫ ϕ−1
i (t)

t

Bi(u)du

−MiBi(ϕ
−1
i (t))

H l
i ϕ̇i(ϕ

−1
i (t))

∫ ϕ−1
i (ϕ−1

i (t))

ϕ−1
i (t)

Bi(u)du

− 1

(1 +mi)2

n∑
j=1,j 6=i

Cji(ψ
−1
ji (t))

ψ̇ji(ψ
−1
ji (t))

[
1 +

Mj

H l
j

∫ ϕ−1
j (ψ−1

ji (t))

ψ−1
ji (t)

Bj(u)du

]
,

in which ϕ−1i and ψ−1ij are the inverse function of ϕi(t) = t−τi(t) and ψij(t) = t−σij(t), i, j = 1, 2, · · · , n, j 6= i,

respectively.

Then the solution of system (2.1) is globally attractive.

Proof. Let y(t) = (y1(t), y2(t), · · · , yn(t))T and ȳ(t) = (ȳ1(t), ȳ2(t), · · · , ȳn(t))T be any two positive solu-

tions of the system (2.1).

From Theorem 3.2, there exists a positive constant T > 0, such that

mi

Hu
i

≤ yi(t) ≤
Mi

H l
i

, for t > T, i = 1, 2, · · · , n.
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Let

Vi1(t) = | ln ȳi(t)− ln yi(t)|, i = 1, 2, · · · , n,

then we get the upper right derivative of Vi1 along system (2.1)

D+Vi1(t) = sign(ȳi(t)− yi(t))
(

˙̄yi(t)

ȳi(t)
− ẏi(t)

yi(t)

)
= sign(ȳi(t)− yi(t))

{
−Bi(t)

[
ȳi(t− τi(t))− yi(t− τi(t))

]
+

n∑
j=1,j 6=i

Cij(t)
[ ȳj(t− σij(t))
1 +Hj(t)ȳj(t− σij(t))

− yj(t− σij(t))
1 +Hj(t)yj(t− σij(t))

]}

≤ sign(ȳi(t)− yi(t))
{
−Bi(t)

[
ȳi(t− τi(t))− yi(t− τi(t))

]}
+

n∑
j=1,j 6=i

Cij(t)

(1 +mj)2
∣∣ȳj(t− σij(t))− yj(t− σij(t))∣∣.

By using inequality −sign(a) · b ≤ −|a|+ |a− b|(a, b ∈ R) we obtain that

D+Vi1(t) ≤ −Bi(t)|ȳi(t)− yi(t)|+Bi(t)
∣∣ ∫ t

t−τi(t)
( ˙̄yi(s)− ẏi(s))ds

∣∣
+

n∑
j=1,j 6=i

Cij(t)

(1 +mj)2
∣∣ȳj(t− σij(t))− yj(t− σij(t))∣∣. (4.1)

On substituting the equations of system (2.1) into (4.1) yields

D+Vi1(t) ≤ −Bi(t)|ȳi(t)− yi(t)|

+Bi(t)

∣∣∣∣ ∫ t

t−τi(t)

{
ȳi(s)

[
ai(s)−Bi(s)ȳi(s− τi(s)) +

n∑
j=1,j 6=i

Cij(s)
ȳj(s− σij(s))

1 +Hj(s)ȳj(s− σij(s))

]

− yi(s)
[
ai(s)−Bi(s)yi(s− τi(s)) +

n∑
j=1,j 6=i

Cij(s)
yj(s− σij(s))

1 +Hj(t)yj(s− σij(s))

]}
ds

∣∣∣∣
+

n∑
j=1,j 6=i

Cij(t)

(1 +mj)2
∣∣ȳj(t− σij(t))− yj(t− σij(t))∣∣

= −Bi(t)|ȳi(t)− yi(t)|

+Bi(t)

∣∣∣∣ ∫ t

t−τi(t)

{[
ai(s)−Bi(s)ȳi(s− τi(s)) +

n∑
j=1,j 6=i

Cij(s)
ȳj(s− σij(s))

1 +Hj(s)ȳj(s− σij(s))

]
(ȳi(s)− yi(s))

−Bi(s)yi(s)[ȳi(s− τi(s))− yi(s− τi(s))]

− yi(s)
[ n∑
j=1,j 6=i

Cij(s)
yj(s− σij(s))

1 +Hj(s)yj(s− σij(s))
−

n∑
j=1,j 6=i

Cij(s)
ȳj(s− σij(s))

1 +Hj(s)ȳj(s− σij(s))

]}
ds

∣∣∣∣
+

n∑
j=1,j 6=i

Cij(t)

(1 +mj)2
∣∣ȳj(t− σij(t))− yj(t− σij(t))∣∣. (4.2)
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It follows from (4.2) that for t ≥ T + τ

D+Vi1(t) ≤ −Bi(t)|ȳi(t)− yi(t)|

+Bi(t)

∫ t

t−τi(t)

{[
ai(s) +Bi(s)ȳi(s− τi(s)) +

n∑
j=1,j 6=i

Cij(s)
ȳj(s− σij(s))

1 +Hj(s)ȳj(s− σij(s))

]
|ȳi(s)− yi(s)|

+Bi(s)yi(s)|ȳi(s− τi(s))− yi(s− τi(s))|

+ yi(s)

n∑
j=1,j 6=i

Cij(s)

(1 +mj)2
|ȳj(s− σij(s))− yj(s− σij(s))|

}
ds

+

n∑
j=1,j 6=i

Cij(t)

(1 +mj)2
∣∣ȳj(t− σij(t))− yj(t− σij(t))∣∣

≤ −Bi(t)|ȳi(t)− yi(t)|

+Bi(t)

∫ t

t−τi(t)

{[
ai(s) +

Mi

H l
i

Bi(s) +

n∑
j=1,j 6=i

Mj

H l
j(1 +mj)

Cij(s)

]
|ȳi(s)− yi(s)|

+
Mi

H l
i

Bi(s)|ȳi(s− τi(s))− yi(s− τi(s))|

+
Mi

H l
i

n∑
j=1,j 6=i

Cij(s)

(1 +mj)2
|ȳj(s− σij(s))− yj(s− σij(s))|

}
ds

+

n∑
j=1,j 6=i

Cij(t)

(1 +mj)2
∣∣ȳj(t− σij(t))− yj(t− σij(t))∣∣

= −Bi(t)|ȳi(t)− yi(t)|+Bi(t)

∫ t

t−τi(t)
Fi(s)ds+

n∑
j=1,j 6=i

Cij(t)

(1 +mj)2
∣∣ȳj(t− σij(t))− yj(t− σij(t))∣∣

= −Bi(t)|ȳi(t)− yi(t)|+Bi(t)[Pi(t)− Pi(ϕi(t))]

+

n∑
j=1,j 6=i

Cij(t)

(1 +mj)2
∣∣ȳj(t− σij(t))− yj(t− σij(t))∣∣, (4.3)

where

Fi(s) =

[
ai(s) +

Mi

H l
i

Bi(s) +

n∑
j=1,j 6=i

Mj

H l
j(1 +mj)

Cij(s)

]
|ȳi(s)− yi(s)|

+
Mi

H l
i

Bi(s)|ȳi(s− τi(s))− yi(s− τi(s))|+
Mi

H l
i

n∑
j=1,j 6=i

Cij(s)

(1 +mj)2
|ȳj(s− σij(s))− yj(s− σij(s))|,

and Pi(s) is a primitive function of Fi(s), i, j = 1, 2, · · · , n, j 6= i.

Define

Vi2(t) =

∫ ϕ−1
i (t)

t

∫ t

ϕi(u)

Bi(u)Fi(s)dsdu+

n∑
j=1,j 6=i

1

(1 +mj)2

∫ t

ψij(t)

Cij(ψ
−1
ij (u))

ψ̇ij(ψ
−1
ij (u))

|ȳj(u)− yj(u)|du, (4.4)

we can easily get that

Vi2(t) =

∫ ϕ−1
i (t)

t

Bi(u)[Pi(t)− Pi(ϕi(u))]du+

n∑
j=1,j 6=i

1

(1 +mj)2

∫ t

ψij(t)

Cij(ψ
−1
ij (u))

ψ̇ij(ψ
−1
ij (u))

|ȳj(u)− yj(u)|du

= Pi(t)

∫ ϕ−1
i (t)

t

Bi(u)du−
∫ ϕ−1

i (t)

t

Bi(u)Pi(ϕi(u))du

+

n∑
j=1,j 6=i

1

(1 +mj)2

∫ t

ψij(t)

Cij(ψ
−1
ij (u))

ψ̇ij(ψ
−1
ij (u))

|ȳj(u)− yj(u)|du.
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Then, we obtain that for t ≥ T + τ

D+Vi2(t) = Fi(t)

∫ ϕ−1
i (t)

t

Bi(u)du+ Pi(t)[
1

ϕ̇i(t)
Bi(ϕ

−1
i (t))−Bi(t)]

−[
1

ϕ̇i(t)
Bi(ϕ

−1
i (t))Pi(ϕi(ϕ

−1
i (t)))−Bi(t)Pi(ϕi(t))]

+

n∑
j=1,j 6=i

1

(1 +mj)2
Cij(ψ

−1
ij (t))

ψ̇ij(ψ
−1
ij (t))

|ȳj(t)− yj(t)|

−
n∑

j=1,j 6=i

1

(1 +mj)2
ψ̇ij(t)

Cij(ψ
−1
ij (ψij(t)))

ψ̇ij(ψ
−1
ij (ψij(t)))

|ȳj(ψij(t))− yj(ψij(t))|

= Fi(t)

∫ ϕ−1
i (t)

t

Bi(u)du−Bi(t)[Pi(t)− Pi(ϕi(t))]

+

n∑
j=1,j 6=i

Cij(ψ
−1
ij (t))

(1 +mj)2ψ̇ij(ψ
−1
j (t))

|ȳj(t)− yj(t)|

−
n∑

j=1,j 6=i

Cij(t)

(1 +mj)2
|ȳj(t− σij(t))− yj(t− σij(t))|. (4.5)

Define

Vi3(t) =
Mi

H l
i

∫ t

ϕi(t)

∫ ϕ−1
i (ϕ−1

i (l))

ϕ−1
i (l)

Bi(u)Bi(ϕ
−1
i (l))

ϕ̇i(ϕ
−1
i (l))

|ȳi(l)− yi(l)|dudl

+
Mi

H l
i

n∑
j=1,j 6=i

∫ t

ψij(t)

∫ ϕ−1
i (ψ−1

ij (l))

ψ−1
ij (l)

Bi(u)Cij(ψ
−1
ij (l))

(1 +mj)2ψ̇ij(ψ
−1
ij (l))

|ȳj(l)− yj(l)|dudl, (4.6)

we obtain that for t ≥ T + τ

D+Vi3(t) =
MiBi(ϕ

−1
i (t))

H l
i ϕ̇i(ϕ

−1
i (t))

∫ ϕ−1
i (ϕ−1

i (t))

ϕ−1
i (t)

Bi(u)du|ȳi(t)− yi(t)|

−Mi

H l
i

Bi(t)|ȳi(t− τi(t))− yi(t− τi(t))|
∫ ϕ−1

i (t)

t

Bi(u)du

+
Mi

H l
i

n∑
j=1,j 6=i

Cij(ψ
−1
ij (t))

(1 +mj)2ψ̇ij(ψ
−1
ij (t))

∫ ϕ−1
i (ψ−1

ij (t))

ψ−1
ij (t)

Bi(u)du|ȳj(t)− yj(t)|

−Mi

H l
i

n∑
j=1,j 6=i

Cij(t)

(1 +mj)2

∫ ϕ−1
i (t)

t

Bi(u)du|ȳj(t− σij(t))− yj(t− σij(t))|. (4.7)

Define

Vi(t) = Vi1(t) + Vi2(t) + Vi3(t), i = 1, 2, · · · , n,

it then follows from (4.3)-(4.7) that for t ≥ T + τ

D+Vi(t) ≤ −Bi(t)|ȳi(t)− yi(t)|

+

[
ai(t) +

Mi

H l
i

Bi(t) +

n∑
j=1,j 6=i

Mj

H l
j(1 +mj)

Cij(t)

] ∫ ϕ−1
i (t)

t

Bi(u)du|ȳi(t)− yi(t)|

+

n∑
j=1,j 6=i

Cij(ψ
−1
ij (t))

(1 +mj)2ψ̇ij(ψ
−1
ij (t))

|ȳj(t)− yj(t)|

+
MiBi(ϕ

−1
i (t))

H l
i ϕ̇i(ϕ

−1
i (t))

∫ ϕ−1
i (ϕ−1

i (t))

ϕ−1
i (t)

Bi(u)du|ȳi(t)− yi(t)|

+
Mi

H l
i

n∑
j=1,j 6=i

Cij(ψ
−1
ij (t))

(1 +mj)2ψ̇ij(ψ
−1
ij (t))

∫ ϕ−1
i (ψ−1

ij (t))

ψ−1
ij (t)

Bi(u)du|ȳj(t)− yj(t)|. (4.8)
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Define Lyapunov function V (t) as

V (t) =

n∑
i=1

Vi(t),

it follows from (4.8) that for t ≥ T + τ

D+V (t) ≤ −
n∑
i=1

Gi(t)|ȳi(t)− yi(t)|, (4.9)

where Gi(t) is defined in Theorem 4.1.

By condition (H4), there exist positive constants βi(i = 1, 2, · · · , n) and T0 ≥ T + τ such that if t > T0

Gi(t) ≥ βi > 0. (4.10)

Let β∗ = min{β1, β2, · · · , βn}, we obtain from (4.9) and (4.10)

D+V (t) ≤ −β∗
n∑
i=1

|ȳi(t)− yi(t)|, (4.11)

Integrating both sides of (4.11) on interval [T0, t], we obtain

V (t) + β∗
∫ t

T0

n∑
i=1

|ȳi(u)− yi(u)|du ≤ V (T0), for t ≥ T0.

Therefore, V (t) is bounded on [T0,+∞) and also∫ +∞

T0

n∑
i=1

|ȳi(u)− yi(u)|du ≤ +∞.

From system (2.1) and Theorem 3.2, we can obtain that

ȳi(t)− yi(t), i = 1, 2, · · · , n

and their derivatives remain bounded on [T0,+∞). Therefore

n∑
i=1

|ȳi(t)− yi(t)|

is uniformly continuous. By Barbalat Lemma( [24]), we conclude that

lim
t→+∞

n∑
i=1

|ȳi(t)− yi(t)| = 0

and here

lim
t→+∞

|ȳi(t)− yi(t)| = 0, i = 1, 2, · · · , n. (4.12)

Then the positive solution of system (2.1) is globally attractive. This completes this proof of Theorem 4.1.

5 Almost periodic solution

The main result of this paper concerns the existence and uniqueness of positive almost periodic solution

of systems (1.1) and (1.2) which is globally attractive. We first prove that system (2.1) has a unique globally

attractive positive almost periodic solution. To be precise:

Theorem 5.1 Assume that (H1)-(H4) hold. Then system (2.1) admits a unique positive almost periodic

solution which is globally attractive.
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Proof. From Theorem 3.3, there exists a bounded positive solution (y1(t), y2(t), · · · , yn(t))T of system (2.1)

satisfying
mi

Hu
i

≤ yi(t) ≤
Mi

H l
i

, t ∈ R+.

Then there exists a sequence {δ′p} with δ
′

p →∞ as p→∞ such that (y1(t+ δ
′

p), y2(t+ δ
′

p), · · · , yn(t+ δ
′

p))
T is

a solution of the following system

ẏi(t) = yi(t)

[
ai(t+ δ

′

p)−Bi(t+ δ
′

p)yi(t− τi(t)) +

n∑
j=1,j 6=i

Cij(t+ δ
′

p)yj(t− σij(t))
1 +Hj(t+ δ′p)yj(t− σij(t))

]
, i = 1, 2, · · · , n. (5.1)

From above and Theorem 3.1, we have that not only (y1(t+ δ
′

p), y2(t+ δ
′

p), · · · , yn(t+ δ
′

p))
T but also (ẏ1(t+

δ
′

p), ẏ2(t+δ
′

p), · · · , ẏn(t+δ
′

p))
T are uniformly bounded, thus (y1(t+δ

′

p), y2(t+δ
′

p), · · · , yn(t+δ
′

p))
T is uniformly

bounded and equi-continuous. By Ascoli theorem [25], there exists a uniformly convergent subsequence {(y1(t+

δp), y2(t + δp), · · · , yn(t + δp))
T } ⊆ {(y1(t + δ

′

p), y2(t + δ
′

p), · · · , yn(t + δ
′

p))
T } such that for any ∀ε > 0, there

exists a λ0(ε) > 0 with the property that if p, q > λ0(ε) then

|yi(t+ δp)− yi(t+ δq)| < ε, i = 1, 2, · · · , n,

which shows that (y1(t), y2(t), · · · , yn(t)) is asymptotically almost periodic function of system (2.1). So, by

Definition 2.2, there exist pi(t) and qi(t), for i = 1, 2, · · · , n, t ∈ R+, such that

yi(t) = pi(t) + qi(t), t ∈ R+,

where

lim
p→+∞

pi(t+ δp) = pi(t), lim
p→+∞

qi(t+ δp) = 0,

pi(t) are almost periodic functions. It means that

lim
p→+∞

yi(t+ δp) = pi(t), i = 1, 2, · · · , n.

On the other hand,

lim
p→+∞

ẏi(t+ δp) = lim
p→+∞

lim
h→0

yi(t+ δp + h)− yi(t+ δp)

h

= lim
h→0

lim
p→+∞

yi(t+ δp + h)− yi(t+ δp)

h
= lim
h→0

pi(t+ h)− pi(t)
h

, (5.2)

so the function ṗi(t)(i = 1, 2, · · · , n) exist.

Now we will prove that

p(t) = (p1(t), p2(t), · · · , pn(t))T

is an almost periodic solution of system (2.1).

From properties of almost periodic function, there exists a sequence {δλ}, δλ →∞ as λ→ +∞, such that

ai(t+ δλ)→ ai(t), Bi(t+ δλ)→ Bi(t), Cij(t+ δλ)→ Cij(t), Hi(t+ δλ)→ Hi(t), τi(t+ δλ)→ τi(t),

as λ→ +∞ uniformly on R+, i = 1, 2, · · · , n.

It is not difficult to know that

lim
λ→+∞

yi(t+ δλ) = pi(t), i = 1, 2, · · · , n,
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then we have

ṗi(t) = lim
λ→+∞

ẏi(t+ δλ)

= lim
λ→+∞

yi(t+ δλ)

[
ai(t+ δλ)−Bi(t+ δλ)yi(t+ δλ − τi(t+ δλ))

+

n∑
j=1,j 6=i

Cij(t+ δλ)
yj(t+ δλ − σij(t+ δλ))

1 +Hj(t+ δλ)yj(t+ δλ − σij(t+ δλ))

]

= pi(t)

[
ai(t)−Bi(t)yi(t− τi(t)) +

n∑
j=1,j 6=i

Cij(t)
yj(t− σij(t))

1 +Hj(t)yj(t− σij(t))

]
.

This prove that p(t) = (p1(t), p2(t), · · · , pn(t))T satisfied system (2.1), and p(t) is a positive almost periodic

solution of system (2.1).

Finally, we show that there is only one positive almost periodic solution of system (2.1). For any two

positive almost periodic solution p(t) = (p1(t), p2(t), · · · , pn(t))T and q(t) = (q1(t), q2(t), · · · , qn(t))T of system

(2.1), we claim that pi(t) = qi(t)(i = 1, 2, · · · , n) for all t ∈ R+. Otherwise there must be at least one positive

number ξ ∈ R+ such that pi(ξ) 6= qi(ξ) for a certain positive integer i, i.e., Φ = |pi(ξ)− qi(ξ)| > 0. So we can

easily know that

Φ = | lim
p→+∞

pi(ξ + δp)− lim
p→+∞

qi(ξ + δp)| = lim
p→+∞

|pi(ξ + δp)− qi(ξ + δp)| = lim
t→+∞

|pi(t)− qi(t)| > 0,

which is a contradiction to (4.12). Thus pi(t) = qi(t) (i = 1, 2, · · · , n) holds for ∀t ∈ R+. Therefore, system

(1.1) admits a unique almost periodic solution which is globally attractive. This completes the proof of

Theorem 5.1.

Theorem 5.2 Assume that (H1)-(H4) hold. Then systems (1.1) and (1.2) admit a unique positive almost

periodic solution which is globally attractive.

Proof. From Lemma 2.5, we know that

(x1(t), x2(t), · · · , xn(t))T =
( ∏
0<tk<t

(1 + h1k)y1(t),
∏

0<tk<t

(1 + h2k)y2(t), · · · ,
∏

0<tk<t

(1 + hnk)yn(t)
)T

is a solution of systems (1.1) and (1.2). Since condition (H2) holds, similar to the proofs of Lemma 31 and Theo-

rem 79 in [26], we can prove that (x1(t), x2(t), · · · , xn(t))T is almost periodic. Therefore, (x1(t), x2(t), · · · , xn(t))T

is a unique globally attractive almost periodic solution of systems (1.1) and (1.2), because of the uniqueness

and of global attractivity of (y1(t), y2(t), · · · , yn(t))T of system (2.1). This completes the proof.

Remark 5.1 If τi(t) = τi and σij(t) = σij(i, j = 1, 2, · · · , n, j 6= i), where τi and σij are nonnegative con-

stants, the condition (H4) can be simplified. Therefore, we have the following result.

Corollary 5.1 Let τi(t) = τi and σij(t) = σij(i, j = 1, 2, · · · , n, j 6= i), where τi and σij are nonnegative

constants. In addition to conditions (H1) and (H2) assume further that

lim inf
t→+∞

{
Bi(t)−

1

(1 +mi)2

n∑
j=1,j 6=i

Cji(t+ σji)
[
1 +

Mj

H l
j

∫ t+τj+σji

t+σji

Bj(u)du
]

−
[
ai(t) +

Mi

H l
i

Bi(t) +

n∑
j=1,j 6=i

MjCij(t)

H l
j(1 +mj)

] ∫ t+τi

t

Bi(u)du− MiBi(t+ τi)

H l
i

∫ t+2τi

t+τi

Bi(u)du

}
> 0,

i = 1, 2, · · · , n. Then systems (1.1) and (1.2) admit a unique positive almost periodic solution which is globally

attractive.

Remark 5.2 If hik ≡ 0(i = 1, 2, · · · , n, k ∈ R+), the condition (H4) can be simplified. Therefore, we have
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the following result.

Corollary 5.2 Let hik ≡ 0(i = 1, 2, · · · , n, k ∈ R+). In addition to conditions (H1) and (H3) assume further

that

lim inf
t→+∞

{
bi(t)−

1

(1 +mi)2

n∑
j=1,j 6=i

cji(ψ
−1
ji (t))

ψ̇ji(ψ
−1
ji (t))

[
1 +Mj

∫ ϕ−1
j (ψ−1

ji (t))

ψ−1
ji (t)

bj(u)du
]

−
[
ai(t) +Mibi(t) +

n∑
j=1,j 6=i

Mjcij(t)

1 +mj

] ∫ ϕ−1
i (t)

t

bi(u)du− Mibi(ϕ
−1
i (t))

ϕ̇i(ϕ
−1
i (t))

∫ ϕ−1
i (ϕ−1

i (t))

ϕ−1
i (t)

bi(u)du

}
> 0,

i = 1, 2, · · · , n. Then systems (1.1) and (1.2) admit a unique positive almost periodic solution which is globally

attractive.

Remark 5.3 If σij(t) = 0(i, j = 1, 2, · · · , n, j 6= i), system (1.1) reduces to the system (1.1) in [1]. Some

known results in [1] are improved and generalized.

6 An example

In this section, we give the following example to check the feasibility of our result.

Example Consider the following two species Lotka-Volterra mutualism system with time delays and impulsive

effects:



ẋ1(t) = x1(t)

[
0.3− 0.05 sin(

√
2t)− (0.25− 0.05 cos(

√
3t))x1(t− 0.01) +

0.1x2(t− 0.02)

1 + x2(t− 0.02)

]
,

ẋ2(t) = x2(t)

[
0.3− 0.05 cos(

√
2t)− (0.25− 0.05 sin(

√
3t))x1(t− 0.02) +

0.05x1(t− 0.01)

1 + x1(t− 0.01)

]
,

x1(t+k ) = (1 + hk)x1(tk),

x2(t+k ) = (1 + hk)x2(tk), k ∈ Z+.

(6.1)

where
∏

0<tk<t
(1 + hk) ∈ [1, 1.1] is almost periodic, t ∈ R+.

A computation shows that

m1 ≈ 0.8262, M1 ≈ 2.1703, m2 ≈ 0.7371, M2 ≈ 2.2681, τ = 0.02,

and moreover, we have

lim inf
t→+∞

G1(t) > 0.05 > 0, lim inf
t→+∞

G2(t) > 0.05 > 0,

It is easy to see that the condition (H4) are satisfied. Hence, there exists a unique globally attractive almost

periodic solution of system (6.1).

7 Concluding Remarks

In this paper, a multispecies Lotka-Volterra mutualism system with time-varying delays and impulsive

effects is considered. Assume that the coefficients in system (1.1) are bounded non-negative almost periodic

functions, we obtain the sufficient conditions for the existence of a unique almost periodic solution which is

globally attractive. By comparative analysis, we find that when the coefficients in system (1.1) are almost

periodic, the existence of a unique almost periodic solution of system (1.1) and (1.2) is determined by the

global attractivity of system (1.1) and (1.2), which implies that there is no additional condition to add.
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Furthermore, for the almost periodic multispecies Lotka-Volterra mutualism system with time-varying

delays and feedback controls, we would like to mention here the question of whether the existence of a unique

almost periodic solution is determined by the global attractivity of the system or not. It is, in fact, a very

challenging problem, and we leave it for our future work.
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